A new generalization of confluent hypergeometric function and whittaker function
نویسندگان
چکیده
منابع مشابه
Multivariate Generalization of the Confluent Hypergeometric Function Kind 1 Distribution
The confluent hypergeometric function kind 1 distribution with the probability density function pdf proportional to x −11F1 α; β;−x , x > 0 occurs as the distribution of the ratio of independent gamma and beta variables. In this article, a multivariate generalization of this distribution is defined and derived. Several pertinent properties of this multivariate distribution are discussed that sh...
متن کاملA Connection Formula for the q-Confluent Hypergeometric Function
We show a connection formula for the q-confluent hypergeometric functions 2φ1(a, b; 0; q, x). Combining our connection formula with Zhang’s connection formula for 2φ0(a, b;−; q, x), we obtain the connection formula for the q-confluent hypergeometric equation in the matrix form. Also we obtain the connection formula of Kummer’s confluent hypergeometric functions by taking the limit q → 1− of our...
متن کاملProperties of the Bivariate Confluent Hypergeometric Function Kind 1 Distribution
The bivariate confluent hypergeometric function kind 1 distribution is defined by the probability density function proportional to x1 1 x2 2 1 F1(α; β; −x1 − x2). In this article, we study several properties of this distribution and derive density functions of X1/X2, X1/(X1 + X2), X1 + X2 and 2 √ X1X2. The density function of 2 √ X1X2 is represented in terms of modified Bessel function of the s...
متن کاملA Bivariate Gamma-type Probability Function Using a Confluent Hypergeometric Function of Two Variables
Al-Saqabi et al. [4] defined a univariate gamma-type function involving the confluent hypergeometirc function of two variables and discussed some associated statistical functions. We define a bivariate extension of their gamma-type function using another form of a confluent hypergeometric function of two variables and discuss some of its statistical functions.
متن کاملOn the confluent hypergeometric function coming from the Pareto distribution
Making use of the confluent hypergeometric function we can obtain the Laplace-Stieltje transform of the Pareto distribution in the following form ζ(s) = hU(1; 1− h; s) = 1F1(1; 1− h; s)− Γ(1− h)s1F1(1 + h; 1 + h; s). About this transform, we obtain an identity, Γ(1 + h)|U(1, 1− h, s)|2 = ∫ ∞ 0 ∫ ∞ 0 λhe−λ−y |λ+ s|2 + λy 2000 Mathematical Subject Classification: 33C15, 60E07
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boletim da Sociedade Paranaense de Matemática
سال: 2018
ISSN: 2175-1188,0037-8712
DOI: 10.5269/bspm.v38i2.37578